Hide table of contents

At EAGxBoston in April, I attended his talk of the same name (embedded below for those who prefer video format). I found it to be a great introduction to the current state of pandemic preparedness/GCBR. It has now been published as a paper by the Geneva Centre for Security Policy. I had some trouble finding it even on their website, so it seemed worth linkposting here. Executive summary and key takeaways are reproduced below.


Executive summary

The world is demonstrably vulnerable to the introduction of a single pandemic virus with a comparatively low case fatality rate. The deliberate and simultaneous release of many pandemic viruses across travel hubs could threaten the stability of civilisation. Current trends suggest that within a decade, tens of thousands of skilled individuals will be able to access the information required for them to single-handedly cause new pandemics. Safeguarding civilisation from the catastrophic misuse of biotechnology requires delaying the development and misuse of pandemic-class agents while building systems capable of reliably detecting threats and preventing nearly all infections.

Key takeaways

Background

  • We don't yet know of any credible viruses that could cause new pandemics, but ongoing research projects aim to publicly identify them.
  • Identifying a sequenced virus as pandemic-capable will allow >1,000 individuals to assemble it.
  • One person with a list of such viruses could simultaneously ignite multiple pandemics.
  • Viruses can spread faster than vaccines or antivirals can be distributed.
  • Pandemic agents are more lethal than nuclear devices and will be accessible to terrorists.

Delay

  • A pandemic test-ban treaty will delay proliferation without slowing beneficial advances.
  • Liability and insurance for catastrophic outcomes will compensate for negative externalities.
  • Secure and universal DNA synthesis screening can reduce unauthorised access by >100-fold.

Detect

  • Untargeted sequencing can reliably detect all exponentially spreading biological threats

Defend

Goal: eliminate the virus while providing food, water, power, law
enforcement, and healthcare

  • Develop and distribute pandemic-proof protective equipment for all essential workers
  • Comfortable, stylish, durable powered respirators must be proven to work reliably
  • Foster resilient supply chains, local production, and behavioural outbreak control
  • Strengthen systems and offer individualised early warning to block transmission
  • Develop and install germicidal low-wavelength lights, which appear to be harmless to humans
  • Overhead fixtures can reduce airborne and surface pathogens by >90 per cent in seconds

Read the Full PDF.

Comments7


Sorted by Click to highlight new comments since:

Thanks for posting this, Jeremy! The Delay, Detect, Defend framework is the best I know for understanding the strategy behind actionable interventions for GCBR reduction. A biosafe world seems within our reach, but we must take these threats seriously.

Agreed. I find Kevin to be an excellent communicator on the subject. There are a few other posts on the forum with podcasts and videos featuring him, easily found my searching on his name, for those who are interested in further content.

aj
8
3
0

For anyone interested in this topic, I recommend listening to this podcast, which hosts Kevin Esvelt and Jonas Sandbrink. They cover a lot of similar ground as the paper and I found it to be a pretty good listen. 

Thanks for sharing this! In case someone wants another summary/writeup, Kelsey Piper also wrote about this for Vox's Future Perfect.

Does anyone know if pandemic prevention PAC that SBF had been funding (Protecting our Future?) is going to live on? Seems like it should.

It's a great overview.

Some things I find missing/underemphasized in the Defense section:

  • Ventilation is mentioned briefly, mentioning that achieving aircraft-level ventilation (20 air changes/hour, ACH) is expensive and noisy. But substantial reduction already comes at 6ACH, and 12 ACH is really good (but would probably not stop Omicron BA1-level transmission in an immunologically naive population). Enforcing air quality standards in transport hubs seems a sensible and valuable policy to me.

  • Broad-spectrum antivirals aren't empathized because they would be circumventable and face distribution issues. The first seems not a strong reason: a number of antiviral medications together would very significantly constrain the option space. There are also plenty of immunosupportive therapeutics in development that would be hard to circumvent. I would think production would be a bigger issue than distribution? Stockpiling seems like the obvious solution.

  • There's decent evidence of certain nasal sprays (containing eg povidone iodine or carrageenan) being broadly effective against airborne pathogens. These could be stockpiled, freely distributed/cheaply promoted at travel hubs, or added to people's daily routines (e.g. like washing hands and brushing teeth)

Regarding Detection:

  • I'm not sure how long it will take to convince institutions to do air sampling. As an intermediate solution, air sampling could also be crowdsourced. There are people measuring CO2 levels everywhere they go. Let them take swabs from the outside of their respirators or portable air filters and send it to a lab?

This is terrifying.

Curated and popular this week
 ·  · 22m read
 · 
The cause prioritization landscape in EA is changing. Prominent groups have shut down, others have been founded, and everyone’s trying to figure out how to prepare for AI. This is the third in a series of posts critically examining the state of cause prioritization and strategies for moving forward. Executive Summary * An increasingly common argument is that we should prioritize work in AI over work in other cause areas (e.g. farmed animal welfare, reducing nuclear risks) because the impending AI revolution undermines the value of working in those other areas. * We consider three versions of the argument: * Aligned superintelligent AI will solve many of the problems that we currently face in other cause areas. * Misaligned AI will be so disastrous that none of the existing problems will matter because we’ll all be dead or worse. * AI will be so disruptive that our current theories of change will all be obsolete, so the best thing to do is wait, build resources, and reformulate plans until after the AI revolution. * We identify some key cruxes of these arguments, and present reasons to be skeptical of them. A more direct case needs to be made for these cruxes before we rely on them in making important cause prioritization decisions. * Even on short timelines, the AI transition may be a protracted and patchy process, leaving many opportunities to act on longer timelines. * Work in other cause areas will often make essential contributions to the AI transition going well. * Projects that require cultural, social, and legal changes for success, and projects where opposing sides will both benefit from AI, will be more resistant to being solved by AI. * Many of the reasons why AI might undermine projects in other cause areas (e.g. its unpredictable and destabilizing effects) would seem to undermine lots of work on AI as well. * While an impending AI revolution should affect how we approach and prioritize non-AI (and AI) projects, doing this wisel
 ·  · 4m read
 · 
TLDR When we look across all jobs globally, many of us in the EA community occupy positions that would rank in the 99.9th percentile or higher by our own preferences within jobs that we could plausibly get.[1] Whether you work at an EA-aligned organization, hold a high-impact role elsewhere, or have a well-compensated position which allows you to make significant high effectiveness donations, your job situation is likely extraordinarily fortunate and high impact by global standards. This career conversations week, it's worth reflecting on this and considering how we can make the most of these opportunities. Intro I think job choice is one of the great advantages of development. Before the industrial revolution, nearly everyone had to be a hunter-gatherer or a farmer, and they typically didn’t get a choice between those. Now there is typically some choice in low income countries, and typically a lot of choice in high income countries. This already suggests that having a job in your preferred field puts you in a high percentile of job choice. But for many in the EA community, the situation is even more fortunate. The Mathematics of Job Preference If you work at an EA-aligned organization and that is your top preference, you occupy an extraordinarily rare position. There are perhaps a few thousand such positions globally, out of the world's several billion jobs. Simple division suggests this puts you in roughly the 99.9999th percentile of job preference. Even if you don't work directly for an EA organization but have secured: * A job allowing significant donations * A position with direct positive impact aligned with your values * Work that combines your skills, interests, and preferred location You likely still occupy a position in the 99.9th percentile or higher of global job preference matching. Even without the impact perspective, if you are working in your preferred field and preferred country, that may put you in the 99.9th percentile of job preference
 ·  · 6m read
 · 
I am writing this to reflect on my experience interning with the Fish Welfare Initiative, and to provide my thoughts on why more students looking to build EA experience should do something similar.  Back in October, I cold-emailed the Fish Welfare Initiative (FWI) with my resume and a short cover letter expressing interest in an unpaid in-person internship in the summer of 2025. I figured I had a better chance of getting an internship by building my own door than competing with hundreds of others to squeeze through an existing door, and the opportunity to travel to India carried strong appeal. Haven, the Executive Director of FWI, set up a call with me that mostly consisted of him listing all the challenges of living in rural India — 110° F temperatures, electricity outages, lack of entertainment… When I didn’t seem deterred, he offered me an internship.  I stayed with FWI for one month. By rotating through the different teams, I completed a wide range of tasks:  * Made ~20 visits to fish farms * Wrote a recommendation on next steps for FWI’s stunning project * Conducted data analysis in Python on the efficacy of the Alliance for Responsible Aquaculture’s corrective actions * Received training in water quality testing methods * Created charts in Tableau for a webinar presentation * Brainstormed and implemented office improvements  I wasn’t able to drive myself around in India, so I rode on the back of a coworker’s motorbike to commute. FWI provided me with my own bedroom in a company-owned flat. Sometimes Haven and I would cook together at the residence, talking for hours over a chopping board and our metal plates about war, family, or effective altruism. Other times I would eat at restaurants or street food booths with my Indian coworkers. Excluding flights, I spent less than $100 USD in total. I covered all costs, including international transportation, through the Summer in South Asia Fellowship, which provides funding for University of Michigan under