These two talks are unrelated, but are interesting conversations about AI Safety from people outside the AI Safety Community.

Gebru: Eugenics and the Promise of Utopia through Artificial Intelliegence

Most of the talk is critical analysis of EA and adjacent communities, although at 37 mins she pivots to discussing visions of AGI, and at about 47 minutes discusses why AGI is inherently unsafe. This last section on why AGI is inherently unsafe I think will get a lot of agreement from people here. 

 

 

Lazar: Generative AI and the New Bing

The talk is much less focused on AI XRisk specifically, although a lot of it is likely relevant for people thinking. The section around 34 minutes- 39 minutes on the , whilst short, is explicitly relevant to EA concerns

-7

0
0

Reactions

0
0
Comments5


Sorted by Click to highlight new comments since:

The second video seems really interesting to me, as someone who's into moral philosophy. The first video personally falls into "it's bad on purpose to make you click" territory, though.

If you watch from when I suggest in the link, I think it's less bad than you make out

I skimmed from 37:00 to the end. It wasn't anything groundbreaking. There was one incorrect claim ("AI safteyists encourage work at AGI companies"), I think her apparent moral framework that puts disproportionate weight on negative impacts on marginalised groups is not good, and overall she comes across as someone who has just begun thinking about AGI x-risk and so seems a bit naive on some issues. However, "bad on purpose to make you click" is very unfair.

But also: she says that hyping AGI encourages races to build AGI. I think this is true! Large language models at today's level of capability - or even somewhat higher than this - are clearly not  a "winner takes all" game; it's easy to switch to a different model that suits your needs better and I expect the most widely used systems to be the ones that work the best for what people want them to do. While it makes sense that companies will compete to bring better products to market faster, it would be unusual to call this activity an "arms race". Talking about arms races makes more sense if you expect that AI systems of the future will offer advantages much more decisive than typical "first mover" advantages, and this expectation is driven by somewhat speculative AGI discourse.

She also questions whether AI safetyists should be trusted to improve the circumstances of everyone vs their own (perhaps idiosyncratic) priorities. I think this is also a legitimate concern! MIRI were at some point apparently aiming to 1) build an AGI and 2) use this AGI to stop anyone else building an AGI (Section A, point 6). If they were successful, that would put them in a position of extraordinary power. Are they well qualified to do that? I'm doubtful (though I don't worry about it too much because I don't think they'll succeed)

There was one incorrect claim ("AI safteyists encourage work at AGI companies")

"AI safetyists" absolutely do encourage work at AGI companies. To take one of many examples, 80,000 Hours are "AI safetyists", and their job board currently encourages work at OpenAI, Deepmind, and Anthropic, which are AGI companies.

(I haven't watched the video.)

Fair enough, she mentioned Yudkowsky before making this claim and I had him in mind when evaluating it (incidentally, I wouldn't mind picking a better name for the group of people who do a lot of advocacy about AI X-risk if you have any suggestions)

Curated and popular this week
 ·  · 10m read
 · 
Regulation cannot be written in blood alone. There’s this fantasy of easy, free support for the AI Safety position coming from what’s commonly called a “warning shot”. The idea is that AI will cause smaller disasters before it causes a really big one, and that when people see this they will realize we’ve been right all along and easily do what we suggest. I can’t count how many times someone (ostensibly from my own side) has said something to me like “we just have to hope for warning shots”. It’s the AI Safety version of “regulation is written in blood”. But that’s not how it works. Here’s what I think about the myth that warning shots will come to save the day: 1) Awful. I will never hope for a disaster. That’s what I’m trying to prevent. Hoping for disasters to make our job easier is callous and it takes us off track to be thinking about the silver lining of failing in our mission. 2) A disaster does not automatically a warning shot make. People have to be prepared with a world model that includes what the significance of the event would be to experience it as a warning shot that kicks them into gear. 3) The way to make warning shots effective if (God forbid) they happen is to work hard at convincing others of the risk and what to do about it based on the evidence we already have— the very thing we should be doing in the absence of warning shots. If these smaller scale disasters happen, they will only serve as warning shots if we put a lot of work into educating the public to understand what they mean before they happen. The default “warning shot” event outcome is confusion, misattribution, or normalizing the tragedy. Let’s imagine what one of these macabrely hoped-for “warning shot” scenarios feels like from the inside. Say one of the commonly proposed warning shot scenario occurs: a misaligned AI causes several thousand deaths. Say the deaths are of ICU patients because the AI in charge of their machines decides that costs and suffering would be minimize
 ·  · 14m read
 · 
This is a transcript of my opening talk at EA Global: London 2025. In my talk, I challenge the misconception that EA is populated by “cold, uncaring, spreadsheet-obsessed robots” and explain how EA principles serve as tools for putting compassion into practice, translating our feelings about the world's problems into effective action. Key points:  * Most people involved in EA are here because of their feelings, not despite them. Many of us are driven by emotions like anger about neglected global health needs, sadness about animal suffering, or fear about AI risks. What distinguishes us as a community isn't that we don't feel; it's that we don't stop at feeling — we act. Two examples: * When USAID cuts threatened critical health programs, GiveWell mobilized $24 million in emergency funding within weeks. * People from the EA ecosystem spotted AI risks years ahead of the mainstream and pioneered funding for the field starting in 2015, helping transform AI safety from a fringe concern into a thriving research field. * We don't make spreadsheets because we lack care. We make them because we care deeply. In the face of tremendous suffering, prioritization helps us take decisive, thoughtful action instead of freezing or leaving impact on the table. * Surveys show that personal connections are the most common way that people first discover EA. When we share our own stories — explaining not just what we do but why it matters to us emotionally — we help others see that EA offers a concrete way to turn their compassion into meaningful impact. You can also watch my full talk on YouTube. ---------------------------------------- One year ago, I stood on this stage as the new CEO of the Centre for Effective Altruism to talk about the journey effective altruism is on. Among other key messages, my talk made this point: if we want to get to where we want to go, we need to be better at telling our own stories rather than leaving that to critics and commentators. Since
 ·  · 3m read
 · 
A friend of mine who worked as a social worker in a hospital told me a story that stuck with me. She had a conversation with an in-patient having a very difficult time. It was helpful, but as she was leaving, they told her wistfully 'You get to go home'. She found it hard to hear—it felt like an admonition. It was hard not to feel guilt over indeed getting to leave the facility and try to stop thinking about it, when others didn't have that luxury. The story really stuck with me. I resonate with the guilt of being in the fortunate position of being able to go back to my comfortable home and chill with my family while so many beings can't escape the horrible situations they're in, or whose very chance at existence depends on our work. Hearing the story was helpful for dealing with that guilt. Thinking about my friend's situation it was clear why she felt guilty. But also clear that it was absolutely crucial that she did go home. She was only going to be able to keep showing up to work and having useful conversations with people if she allowed herself proper respite. It might be unfair for her patients that she got to take the break they didn't, but it was also very clearly in their best interests for her to do it. Having a clear-cut example like that to think about when feeling guilt over taking time off is useful. But I also find the framing useful beyond the obvious cases. When morality feels all-consuming Effective altruism can sometimes feel all consuming. Any spending decision you make affects how much you can donate. Any activity you choose to do takes time away from work you could be doing to help others. Morality can feel as if it's making claims on even the things which are most important to you, and most personal. Often the narratives with which we push back on such feelings also involve optimisation. We think through how many hours per week we can work without burning out, and how much stress we can handle before it becomes a problem. I do find that