Hide table of contents

Introduction

 Algorithms are not clever in the sense that they don’t make judgments, opinions or choices of their own, they simply absorb input, combine what many others have said, treat those opinions according to set rules and spit out some output based on the input and rules (the functions that reinforce their synapses). In that sense, they have the intelligence of an amoeba, whilst it is questionable if they have the same motivation for survival as it. Survival of the fittest, as per the darwinian pop motto, is only a ‘law’ for living things – indeed I doubt whether it would’ve been sensible for the developers of Large Language Models (LLMs) to try to code for survival of the fittest, as this may have resulted in an existential threat for the whole of humanity. 

Main part I

 A further defect of LLMs is that if left on their own, they would simply stand still, they would, in a sense not be ‘alive’. They need input in the form of prompts in order to come on their own. In this sense, it is quite cunning that Chat-GPT (at least until version 3.5) let the user have the first move, and then ingenuously asked ‘how may I help you’ if one said ‘good morning to it’ (or something to that effect. All of this is an attempt to generate input, to feed the LLM with data so that it could ‘feel’ ‘alive’.

An interesting (at least for me), question, would be whether one could say that the LLM is indifferent to the input to it or its output. Despite the reward functions that have been built for it, which if I’ve understood correctly are fundamental to deep learning, I somehow suspect that these models ‘deep down’ (so to speak) actually are indifferent to their outputs (what springs to mind here is a certain quote from Hume about scratching his little finger or something). If a user inputs an ‘evil’ or ‘bad’ or whatever question, the model would give back in response an answer which reflects either the user’s desires, the coders worries, or the wider jumble of opinions that is reflected in its training set or whatever else formed the basis of its mechanisms. In other words, I would claim that assertions such as ‘ChatGPT answered me X’ or ‘ChatGPT thinks that X’ are misguided anthropomorphisations of something that is not human but only transforms and reacts to human logos – come to think of it, like a puppy would do or like a voice effects software used in modern pop or film or whatever, or like a mirror or a camera obscura, or such other things – but human, NO). 

In that respect, I would dare say that it is qualitatively different even to the amoeba described above. An amoeba, motivated by even the baser survival instinct, ‘wants’ or ‘decides’ or simply just moves towards safety and away from danger. And it does that irrespective of what other amoebae did, it does that because (I suspect a biologist would say ‘it is inscribed in the amoeba’s DNA – I doubt a coder would term code as ‘DNA’, though I really don’t know and I wouldn’t mind shown ignorant – though footnote one below points to the thought that coders are indeed trying to address this problem of what I term as ‘indifference’). 

PROVISO THOUGH: I HOPE I AM ANTHROPOMORPHISING THE AMOEBA RATHER THAN MECHANISE HUMANS AND AMOEBAS ALIKE. I WOULD DEFINITELY PREFER TO BE ACCUSED OF THE FORMER, IF ONE HAS TO ACCUSE ME OF SOMETHING.[1]

Main Part II

 As a consequence of the point raised above (to remind the reader, the point is that LLMs are, deep down so to speak, indifferent to their own output), I would hazard to say that they cannot held accountable for whatever shit they may spit out if we provide them with shit rather than good food for thought. Or, in other words, an LLM will ‘try’ to give its ‘best’ input if we give it ‘good’ food for thought, and it will simply ‘become’ mean or whatever else if we feed it with questions that reveal our baser or evil nature. Many many brilliant minds perhaps gave hours and hours of honest effort – in a belief that such an invention would help humanity, to ensure that the above is so, and that is their best output. Of course, pace my previous article, despite defending the average coder, I would still maintain that it is possible that some of the prime movers and movers and makers in the AI business may be motivated by greed and power-hunger as well as by the honest desire ‘improve humanity’. 

And, of course, it is rather to be expected and not at all to be deemed as a failure if the best attempt at ‘improving’ or ‘helping’ humanity ends up being a mirror of the simple reflecting sort rather than the Cinderella (or the transforming mirrors found in museums which make the thin seem fat and the short seem tall – even though these Renaissance marvelous contraptions actually manage to give these amusing transformations) [2]

In more technical terms, if the idealistic motivation was to make a model which will spit out all and only truths, this has already been refuted by Gödel’s Incompleteness Theorem – hence this may explain why, in its attempt to be truthful, ChatGPT (and Bard) end up making things up. It may be up to us to decide whether what it makes up will end up disastrous for us or beneficial or simply a curiosity to be taken advantage of for less meaningful unintended yet not necessarily harmful purposes. 

Epilogue – A silver lining

 Despite the worries, there is at least one example of an algorithm which may end up being quite nice, again, used to enrich human culture rather than having anything to do with intelligence (at least not prima facie or not solely to do with intelligence). 

I am referring to my subjective experience with the Youtube algorithm. Though of course not a LLM or an instance of AI (I think), it is relatively efficient (say 5-10 new videos per month that I keep in my forever list, more through when I search). So maybe, just maybe, if we introduce nice search-words or nice questions to algorithms which are tasked to mimic human preferences, we may in turn cultivate a relationship of trust – the trust reserved to mirrors, with LLMs – and they  may even become as indispensable as them in less than 1000 years :). And we can even do that without having to be afraid of them, or worry too much about them breaking, and in time develop our own proverbs about their usage, in the same fashion that folk wisdom has done this through the ages. :)

  1. ^

    I wish to thank and express my deep gratitude to an esteemed friend (let’s keep him anonymous for the moment for GDPR reasons, hehe) who has pointed out to me (in other words of course) that what I am describing above is called the ‘inner vs the outer alignment problem’ for the AI community

  2. ^

    It is worth remarking that the simple reflecting mirror is at least a 2,500 year old (or much more perhaps) technology, whilst the distorting ones perhaps less than 300 years old. So it seems here that truthful reflection has been a more tried and tested and maintained technology, rather than the improving or simply distorting (irrespective of improving/worsening one). Either way, it is furthurmore worth remarking that at least for the mirror example, whay may have begun as a significant and significantly transforming technology – allowing people to see their faces – has perhaps survived so long because its functions are purely aesthetic, rather than epistemic or truthreflecting :)

5

0
0

Reactions

0
0

More posts like this

Comments3


Sorted by Click to highlight new comments since:

Algorithms are not clever in the sense that they don’t make judgments, opinions or choices of their own, they simply absorb input, combine what many others have said, treat those opinions according to set rules and spit out some output based on the input and rules (the functions that reinforce their synapses).

 

So first off the bat, I'm charitably going to assume that by "algorithms" you mean "LLMs", but even given that assumption, the satement strikes me as either trivially true, or false. Yes, you could say that they simply take inputs and their rules (rules, I might add, that we don't know) to create output, but the same could be said for humans – we behave simply according to our environmental inputs and the rules governing how our brains work (rules which differ somewhat person to person and in the same person across time). Yes, LLMs only operate if you prompt them, but prompting them is easy enough to do, and further this can be automated. Likewise, I'm not really sure what meaningful definition would imply that they don't make judgments, opinions, or choices of their own.

Dear Daniel, 

First of all, many many thanks for your time, charity and quickness!! I really appreciate it that you deemed my post worthy of a reply!

Now, as for the reply and the specific points that you raise. First of all, I think I am quite clear and explicit regarding the use of the shorthand LLM and algorithms. Indeed, in the epilogue, I end with the example of the Youtube algorithm, which I believe is an algorithm but not an LLM (please correct me if i'm wrong). 

Now, on to your second point. I am puzzled by your assertion in brackets that '(rules, I might add, that we don't know)', are you saying that not even the coders who code LLMs know these rules (in this case I'd use the word algorithms, as the rules would in my poor grasp of the matter, be in the forms of algorithms, such as 'if you get prompt X look into dataset Y etc), or do you mean that the rules are not known to the user? I would appreciate it if you could clarify this for me. 

Finally, could you please explain to me what specific 'meaningful definition' your after in your last sentence? I feel a bit lost. 

Once again, many thanks for your prompt response, I would love it if my comments elicit another response for you that will allow both of us to reach a synthesis :)

Best Wishes,
Haris

whoops, scrap my previous answer, especially the first point. I now see that you were referring to a specific quote. Let me see. 

Ah, yes, you may be right that I may have equivocated in the quote you cite, that it may have been more precise had I used the shorthand LLMs. So thanks for your charity!

However, I would like to point out that the fact that you can find something either trivially true or trivially false, under a binary logic may leave the proposition itself as not trivial at all under a different interpretation, no? I mean it's significant that it is not trivially true, it already has two interpretations. But ok, that's an aside that i'm not interested much in, and I think you may not be interested in it either. 

 And now your request for a meaningful definition suddenly makes a lot of sense too!!!! I think what I was trying to express is revealed by 'on their own'. I mean that whereas humans (and maybe animals, though not 100% sure, as i state in my caps bold letters, i may be guilty of anthropomorphism) may sometimes do as others do, and at other times do as they please (judge, choose, etc), LLMs only have one of these options (at the time of writing i may have thought that LLMs don't judge-opine etc without prompts - to which of course you can reply that humans always do so too (to which I'd reply that this a) isn't so, humans do sometimes opine unprompted and that b) that i'd rather anthropomorphise in the sense of treating animals as imbued with human traits rather than treat humans as glorified machines. This is a matter of arbitrary (you may say) choice on my part, and I will not offer an argument for it, at least not now - hence the caps bold. 

Once again, many thanks for enlightening me and apologies if the first post had misunderstood your comment, i hope now I am more on the ball! 

Best Wishes,
Looking forward to an answer from you!
Haris
 

Curated and popular this week
 ·  · 8m read
 · 
Around 1 month ago, I wrote a similar Forum post on the Easterlin Paradox. I decided to take it down because: 1) after useful comments, the method looked a little half-baked; 2) I got in touch with two academics – Profs. Caspar Kaiser and Andrew Oswald – and we are now working on a paper together using a related method.  That blog post actually came to the opposite conclusion, but, as mentioned, I don't think the method was fully thought through.  I'm a little more confident about this work. It essentially summarises my Undergraduate dissertation. You can read a full version here. I'm hoping to publish this somewhere, over the Summer. So all feedback is welcome.  TLDR * Life satisfaction (LS) appears flat over time, despite massive economic growth — the “Easterlin Paradox.” * Some argue that happiness is rising, but we’re reporting it more conservatively — a phenomenon called rescaling. * I test this hypothesis using a large (panel) dataset by asking a simple question: has the emotional impact of life events — e.g., unemployment, new relationships — weakened over time? If happiness scales have stretched, life events should “move the needle” less now than in the past. * That’s exactly what I find: on average, the effect of the average life event on reported happiness has fallen by around 40%. * This result is surprisingly robust to various model specifications. It suggests rescaling is a real phenomenon, and that (under 2 strong assumptions), underlying happiness may be 60% higher than reported happiness. * There are some interesting EA-relevant implications for the merits of material abundance, and the limits to subjective wellbeing data. 1. Background: A Happiness Paradox Here is a claim that I suspect most EAs would agree with: humans today live longer, richer, and healthier lives than any point in history. Yet we seem no happier for it. Self-reported life satisfaction (LS), usually measured on a 0–10 scale, has remained remarkably flat over the last f
 ·  · 4m read
 · 
Summary I’m excited to announce a “Digital Sentience Consortium” hosted by Longview Philanthropy, in collaboration with The Navigation Fund and Macroscopic Ventures, to support research and applied projects focused on the potential consciousness, sentience, moral status, and experiences of artificial intelligence systems. The opportunities include research fellowships, career transition fellowships, and a broad request for proposals for applied work on these topics.  For years, I’ve thought this area was seriously overlooked. It now has growing interest. Twenty-two out of 123 pages of  Claude 4’s model card are about its potential moral patienthood. Scientific experts increasingly say that near-term AI sentience is a real possibility; even the skeptical neuroscientist Anil Seth says, “it is unwise to dismiss the possibility altogether.” We’re hoping to bring new people and projects into the field to increase the chance that society deals with the possibility of digital sentience reasonably, and with concern for all involved. * Apply to Research Fellowship * Apply to Career Transition Fellowship * Apply to Request for Proposals Motivation & Focus For about as long as I’ve been reading about transformative AI, I’ve wondered whether society would face critical decisions involving AI sentience. Until recently, I thought there was not much to be done here besides perhaps more philosophy of mind and perhaps some ethics—and I was not sure these approaches would make much progress.  Now, I think there are live areas where people can contribute: * Technically informed research on which AI systems are sentient, like this paper applying existing theories of consciousness to a few AI architectures. * Innovative approaches to investigate sentience, potentially in a way that avoids having to take a stand on a particular theory of consciousness, like work on  AI introspection. * Political philosophy and policy research on the proper role of AI in society. * Work to ed
 ·  · 11m read
 · 
Confidence: Medium, underlying data is patchy and relies on a good amount of guesswork, data work involved a fair amount of vibecoding.  Intro:  Tom Davidson has an excellent post explaining the compute bottleneck objection to the software-only intelligence explosion.[1] The rough idea is that AI research requires two inputs: cognitive labor and research compute. If these two inputs are gross complements, then even if there is recursive self-improvement in the amount of cognitive labor directed towards AI research, this process will fizzle as you get bottlenecked by the amount of research compute.  The compute bottleneck objection to the software-only intelligence explosion crucially relies on compute and cognitive labor being gross complements; however, this fact is not at all obvious. You might think compute and cognitive labor are gross substitutes because more labor can substitute for a higher quantity of experiments via more careful experimental design or selection of experiments. Or you might indeed think they are gross complements because eventually, ideas need to be tested out in compute-intensive, experimental verification.  Ideally, we could use empirical evidence to get some clarity on whether compute and cognitive labor are gross complements; however, the existing empirical evidence is weak. The main empirical estimate that is discussed in Tom's article is Oberfield and Raval (2014), which estimates the elasticity of substitution (the standard measure of whether goods are complements or substitutes) between capital and labor in manufacturing plants. It is not clear how well we can extrapolate from manufacturing to AI research.  In this article, we will try to remedy this by estimating the elasticity of substitution between research compute and cognitive labor in frontier AI firms.  Model  Baseline CES in Compute To understand how we estimate the elasticity of substitution, it will be useful to set up a theoretical model of researching better alg