crossposted on LessWrong
I'm interested in questions of the form, "I have a bit of metadata/structure to the question, but I know very little about the content of the question (or alternatively, I'm too worried about biases/hacks to how I think about the problem or what pieces of information to pay attention to). In those situations, what prior should I start with?"
I'm not sure if there is a more technical term than "low-information prior."
Some examples of what I found useful recently:
1. Laplace's Rule of Succession, for when the underlying mechanism is unknown.
2. Percentage of binary questions that resolves as "yes" on Metaculus. It turns out that of all binary (Yes-No) questions asked on the prediction platform Metaculus, ~29% of them resolved yes. This means that even if you know nothing about the content of a Metaculus question, a reasonable starting point for answering a randomly selected binary Metaculus question is 29%.
In both cases, obviously there are reasons to override the prior in both practice and theory (for example, you can arbitrarily add a "not" to all questions on Metaculus such that your prior is now 71%). However (I claim), having a decent prior is nonetheless useful in practice, even if it's theoretically unprincipled.
I'd be interested in seeing something like 5-10 examples of low-information priors as useful as the rule of succession or the Metaculus binary prior.
You are probably right but it would be great to have access to the data and check if it is true. I have already spoken with Tamay about the idea od Metaculus data dumps, but if Metaculus Team decides to implement this in some form, it will take time. I will try to gather this data using some script.