crossposted on LessWrong
I'm interested in questions of the form, "I have a bit of metadata/structure to the question, but I know very little about the content of the question (or alternatively, I'm too worried about biases/hacks to how I think about the problem or what pieces of information to pay attention to). In those situations, what prior should I start with?"
I'm not sure if there is a more technical term than "low-information prior."
Some examples of what I found useful recently:
1. Laplace's Rule of Succession, for when the underlying mechanism is unknown.
2. Percentage of binary questions that resolves as "yes" on Metaculus. It turns out that of all binary (Yes-No) questions asked on the prediction platform Metaculus, ~29% of them resolved yes. This means that even if you know nothing about the content of a Metaculus question, a reasonable starting point for answering a randomly selected binary Metaculus question is 29%.
In both cases, obviously there are reasons to override the prior in both practice and theory (for example, you can arbitrarily add a "not" to all questions on Metaculus such that your prior is now 71%). However (I claim), having a decent prior is nonetheless useful in practice, even if it's theoretically unprincipled.
I'd be interested in seeing something like 5-10 examples of low-information priors as useful as the rule of succession or the Metaculus binary prior.
I found the answers to this question on stats.stackexchange useful for thinking about and getting a rough overview of "uninformative" priors, though it's mainly a bit too technical to be able to easily apply in practice. It's aimed at formal Bayesian inference rather than more general forecasting.
In information theory, entropy is a measure of (lack of) information - high entropy distributions have low information. That's why the principle of maximum entropy, as Max suggested, can be useful.
Another meta answer is to use Jeffreys prior. This has the property that it is invariant under a change of coordinates. This isn't the case for maximum entropy priors in general and is a source of inconsistency (see e.g. the partition problem for the principle of indifference, which is just a special case of the principle of maximum entropy). Jeffrey's priors are often unwieldy, but one important exception is for the interval [0,1] (e.g. for a probability), for which the Jeffrey's prior is the beta(1/2,1/2) distribution. See the red line in the graph at the top of the beta distribution Wikipedia page - the density is spread to the edges close to 0 and 1.
This relates to Max's comment about Laplace's Rule of Succession: taking N_v = 2, M_v = 1 corresponds to the uniform distribution on [0,1] (which is just beta(1,1)). This is the maximum entropy entropy distribution on [0,1]. But as Max mentioned, we can vary N_v and M_v. Using Jeffrey's prior would be like setting N_v = 1 and M_v = 1/2, which doesn't have as nice an interpretation (1/2 a success?) but has nice theoretical features. Especially useful if you want to put the density around 0 and 1 but still have mean 1/2.
There's a bit more discussion of Laplace's Rule of Sucession and Jeffrey's prior in an EA context in Toby Ord's comment in response to Will MacAskill's Are we living at the most influential time in history?
Finally, a bit of a cop-out, but I think worth mentioning, is the suggestion of imprecise credences in one of the answers to the stats.stackexchange question linked above. Select a range of priors and seeing how much they converge, you might find prior choice doesn't matter that much and when it does matter, I expect this could be useful for determining your largest uncertainties.
Hm, but if we don't know anything about the possible colours, the natural prior to assume seems to me to give all colors the same likelihood. It seems arbitrary to decide to group a subsection of colors under the label "other", and pretend like it should be treated like a hypothesis on equal footing with the others in your given set, which are single colors.
Yeah, Jeffreys prior seems to make sense here.