I’ve ended up spending quite a lot of time researching premodern economic growth, as part of a hobby project that got out of hand. I’m sharing an informal but long write-up of my findings here, since I think they may be relevant to other longtermist researchers and I am unlikely to write anything more polished in the near future. Click here for the Google document.[1]
Summary
Over the next several centuries, is the economic growth rate likely to remain steady, radically increase, or decline back toward zero? This question has some bearing on almost every long-run challenge facing the world, from climate change to great power competition to risks from AI.
One way to approach the question is to consider the long-run history of economic growth. I decided to investigate the Hyperbolic Growth Hypothesis: the claim that, from at least the start of the Neolithic Revolution up until the 20th century, the economic growth rate has tended to rise in proportion with the size of the global economy.[2] This claim is made in a classic 1993 paper by Michael Kremer. Beyond influencing other work in economic growth theory, it has also recently attracted significant attention within the longtermist community, where it is typically regarded as evidence in favor of further acceleration.[3] An especially notable property of the hypothesized growth trend is that, if it had continued without pause, it would have produced infinite growth rates in the early twenty-first century.
I spent time exploring several different datasets that can be used to estimate pre-modern growth rates. This included a number of recent archeological datasets that, I believe, have not previously been analyzed by economists. I wanted to evaluate both: (a) how empirically well-grounded these estimates are and (b) how clearly these estimates display the hypothesized pattern of growth.
Ultimately, I found very little empirical support for the Hyperbolic Growth Hypothesis. While we can confidently say that the economic growth rate did increase over the centuries surrounding the Industrial Revolution, there is approximately nothing to suggest that this increase was the continuation of a long-standing hyperbolic trend. The alternative hypothesis that the modern increase in growth rates constituted a one-off transition event is at least as consistent with the evidence.
The premodern growth data we have is mostly extremely unreliable: For example, so far as I can tell, Kremer’s estimates for the period between 10,000BC and 400BC ultimately derive from a single speculative paragraph in a book published decades earlier. Putting aside issues of reliability, the various estimates I considered also, for the most part, do not clearly indicate that pre-modern growth was hyperbolic. The most empirically well-grounded datasets we have are at least weakly in tension with the hypothesis. Overall, though, I think we are in a state of significant ignorance about pre-modern growth rates.
Beyond evaluating these datasets, I also spent some time considering the growth model that Kremer uses to explain and support the Hyperbolic Growth Hypothesis. One finding is that if we use more recent data to estimate a key model parameter, the model may no longer predict hyperbolic growth: the estimation method that we use matters. Another finding, based on some shallow reading on the history of agriculture, is that the model likely overstates the role of innovation in driving pre-modern growth.
Ultimately, I think we have less reason to anticipate a future explosion in the growth rate than might otherwise be supposed.[4][5]
EDIT: See also this addendum comment for an explanation of why I think the alternative "phase transition" interpretation of the Industrial Revolution is plausible.
Thank you to Paul Christiano, David Roodman, Will MacAskill, Scott Alexander, Matt van der Merwe, and, especially, Asya Bergal for helpful comments on an earlier version of the document. ↩︎
By "economic growth rate," here, I mean the growth rate of total output, rather than the growth rate of output-per-person. ↩︎
As one example, which includes a particularly clear summary of the hypothesis, see this Slate Star Codex post. ↩︎
I wrote nearly all of this document before the publication of David Roodman’s recent Open Philanthropy report on long-run economic growth. That report, which I strongly recommend to anyone interested in long-run growth, has some overlap with this document. However, the content is fairly different. First, relative to the report, which makes novel contributions to economic growth modeling, the focus of this doc is more empirical than theoretical. I don’t devote much space to relevant growth models, but I do devote a lot of space to the question: “How well can we actually estimate historical growth rates?” Second, I consider a wider variety of datasets and methods of estimating historical growth rates. Third, for the most part, I am comparing a different pair of hypotheses. The report mostly compares a version of the Hyperbolic Growth Hypothesis with the hypothesis that the economic growth rate has been constant throughout history; I mostly compare the Hyperbolic Growth Hypothesis with the hypothesis that, in the centuries surrounding the Industrial Revolution, there was a kind of step-change in the growth rate. Fourth, my analysis is less mathematically rigorous. ↩︎
There is also ongoing work by Alex Lintz to analyze available archeological datasets far more rigorously than I do in this document. You should keep an eye out for this work, which will likely supersede most of what I write about the archeological datasets here. You can also reach out to him (alex.l.lintz@gmail.com) if you are interested in seeing or discussing preliminary findings. ↩︎
Hi Paul,
Thanks for your super detailed comment (and your comments on the previous version)!
I think that Hanson's "series of 3 exponentials" is the neatest alternative, although I also think it's possible that pre-modern growth looked pretty different from clean exponentials (even on average / beneath the noise). There's also a semi-common narrative in which the two previous periods exhibited (on average) declining growth rates, until there was some 'breakthrough' that allowed the growth rate to surge: I suppose this would be a "three s-curve" model. Then there's the possibility that the growth pattern in each previous era was basically a hard-to-characterize mess, but was constrained by a rough upper bound on the maximum achievable growth rate. This last possibility is the one I personally find most likely, of the non-hyperbolic possibilities.
(I think the pre-agricultural period is especially likely to be messy, since I would guess that human evolution and climate/environmental change probably explain the majority of the variation in population levels within this period.)
I think this is a good and fair point. I'm starting out sympathetic toward the breakthrough/phase-change perspective, in large part because this perspective fits well with the kinds of narratives that economic historians and world historians tend to tell. It's reasonable to wonder, though, whether I actually should give much weight to these narratives. Although they rely on much more than just world GDP estimates, their evidence base is also far from great, and they disagree on a ton of issues (there are a bunch of competing economic narratives that only partly overlap.)
A lot of my prior comes down to my impression that the dynamics of growth just *seem * very different to me for forager societies, agricultural/organic societies, and industrial/fossil-fuel societies. In the forager era, for example, it's possible that, for the majority of the period, human evolution was the main underlying thing supporting growth. In the farmer era, the main drivers were probably land conversion, the diffusion and further evolution of crops/animals, agricultural capital accumulation (e.g. more people having draft animals), and piecemeal improvements in farming/land-conversion techniques discovered through practice. I don’t find it difficult to imagine that the latter drivers supported higher growth rates. For example: the fact that non-sedentary groups can’t really accumulate capital, in the same way, seems like a pretty fundamental distinction.
The industrial era is, in comparison, less obviously different from the farming era, but it also seems pretty different. My list of pretty distinct features of pre-modern agricultural economies is: (a) the agricultural sector constituted the majority of the economy; (b) production and (to a large extent) transportation were limited by the availability of agricultural or otherwise ‘organic’ sources of energy (plants to power muscles and produce fertiliser); (c) transportation and information transmission speeds were largely limited by windspeed and the speed of animals; (d) nearly everyone was uneducated, poor, and largely unfree; (e) many modern financial, legal, and political institutions did not exist; (f) certain cultural attitudes (such as hatred of commerce and lack of belief in the possibility of progress) were much more common; and (g) scientifically-minded research and development projects played virtually no role in the growth process.
I also don’t find it too hard to believe that some subset of these changes help to explain why modern industrialised economies can grow faster than premodern agricultural economies: here, for example, is a good book chapter on the growth implications of relying entirely on ‘organic’ sources of energy for production. The differences strike me as pretty fundamental and pretty extensive. Although this impression is also pretty subjective and could easily amount to seeing dividing lines where they don’t exist.
Another piece of evidence is that there’s extreme between-states variation in the growth rates, in modern times, which isn’t well-explained by factors like population size. We’ve seen that it is possible for something to heavily retard/bottleneck growth (e.g. bad political institutions), then for growth to surge following the removal of the bottleneck. It's not too hard to imagine that pre-modern states had lots of blockers. They were in some way similar to 20th/21st century growth basket cases, only with some important extra growth retardants -- like a lack of fossil fuels and artificial fertilizer, a lack of knowledge that material progress is possible, etc. -- thrown on top.
There may also be some fundamental meta-prior that matters, here, about the relative weight one ought to give to simple unified models vs. complex qualitative/multifactoral stories.
I don’t think the post-1500 data is too helpful help for distinguishing between the ‘long run trend’ and ‘few hundred year phase transition’ perspectives.
If there was something like a phase transition, from pre-modern agricultural societies to modern industrial societies, I don’t see any particular reason to expect the growth curve during the transition to look like the sum of two exponentials. (I especially don’t expect this at the global level, since diffusion dynamics are so messy.)
The data is also still pretty bad. While, I think, we can be pretty confident that there was a lot of growth between 1500 and 1800 (way more than between 1200 and 1500), the exact shape of this curve is still really uncertain. The global population estimates are still ‘guesstimates’ for most part of the world, throughout this period. Even the first half of the twentieth century is pretty sketchy; IIRC, as late as the 1970s, there were attempts to estimate the present population of China that differed by up to 15%. (I think the Atlas of World Population History mentions this.) We shouldn’t read too much into the exact curve shape.
A further complication is that there’s a pretty unusual ecological event at the start of the period. Although this is pretty uncertain, the pretty abrupt transfer of species from the New World to the Old World (esp. potatoes and corn) is thought to be a major cause of the population surge. This strikes me as a sort of flukey one-off event that obscures the ‘natural’ growth dynamics for this period; although, you could also view it as endogenous to technological progress.
I wouldn't necessarily say they were significantly faster. It depends a bit on exactly how you run this test, but, when I run a regression for "(dP/dt)/P = a*P^b" (where P is population) on the dataset up until 1700AD, I find that the b parameter is not significantly greater than 0. (The confidence interval is roughly -.2 to .5, with zero corresponding to exponential growth.)
Of course, though, the badness of the data cancels out this finding; it doesn't really matter if there's not a significant difference, according to the data, if the data isn't reliable.
The papers typically suggest that the thing kicking off the growth surge, within a particular millennium, is the beginning of intensive agriculture in that region — so I don’t think the pivotal triggering event is really different. Although I haven’t done any investigation into how legit these suggestions are. It’s totally conceivable that we basically don’t know when intensive agriculture began in these different areas, or that the transition was so smeared out that it’s basically arbitrary to single out any particular millennium as special. If the implicit dotted lines are being drawn post-hoc, then that would definitely be cause for suspicion about the story being told.
I’m also pretty unsure of this. I’d maybe give about a 1/3 probability to them being approximately totally uninformative, for the purposes of distinguishing the two perspectives. (I think the other datasets are probably approximately totally uninformative.) Although the radiocarbon dates are definitely more commonly accepted as proxies for historic human population levels than the genetic data, there are also a number of skeptical papers. I haven’t looked deeply enough into the debate, although I probably ought to have.