Hide table of contents

Given 2 distributions  and  which are independent estimates of the distribution , this be estimated with the inverse-variance method from:

  • .

Under which conditions is this a good aproach? For example, for which types of distributions? These questions might be relevant for determining:

  • A posterior distribution based on distributions for the prior and estimate.
  • A distribution which combines estimates of different theories.

Some notes:

  • The inverse-variance method minimises the variance of a weighted mean of  and .
  • Calculating  and  according to the above formula would result in a mean and variance equal to those derived in this analysis from Dario Amodei, which explains how to combine  and  following a Bayesian approach if these follow normal distributions.

5

0
0

Reactions

0
0
New Answer
New Comment


1 Answers sorted by

If you assume both X1 and X2 are normal then the only difference between them comes from their moments, so you can use the inverse variance formula. But that leans directly on the formula for the product of normal distributions. The formula for a general convolution of two distributions does not have such a clean form. So while I don't have a rigorous argument for this, I would be shocked if you could do the same for any two PDFs X1 and X2 with no change to the formula.

I do not know if this is really necessary for the uses you name, though. Bayes Rule determines the posterior distribution regardless of whether it follows an inverse variance formula or not.

Thanks for the reply!

I also think the above formula does not formally apply to non-normal distributions, but I was wondering whether it was a good enough approximation.

Is there a simple way of applying the Bayes Rule to two arrays  and  of Monte Carlo samples? I believe this is analagous to considering that all elements of  and  are equiprobable.

3
Karthik Tadepalli
I don't think I follow. Monte Carlo sampling is done from a distribution, which I assume you want to use as the basis of your likelihood function? In this case, you can just calculate the likelihood function from this distribution, and combine it with your prior to get a posterior distribution.
1
Vasco Grilo🔸
I was thinking about cases in which X1 and X2 are non-linear functions of arrays of Monte Carlo samples generated from distributions of different types (e.g. loguniform and lognormal). To calculate E(X1), I can simply compute the mean of the elements of X1. I was looking for a similar simple formula to combine X1 and X2, without having to work with the original distributions used to compute X1 and X2. A concrete simple example would be combining the following: * According to estimate 1, X is as likely to be 1, 3, 4, 6 or 8: X1 = [1, 2, 3, 4, 5]. * According to estimate 2, X is as likely to be 2, 4, 6, 8 or 10: X2 = [2, 4, 6, 8, 10]. * The generation mechanisms of estimates 1 and 2 are not known.
2
Karthik Tadepalli
How are both X1 and X2 estimates of X when they are different distributions? At this point I am out of my depth so I do not have an informative answer for you.
1
Vasco Grilo🔸
I will try to illustrate what I mean with an example: * X could be the total number of confirmed and suspected monkeypox cases in Europe as of July 1, 2022. * X1 could be a distribution fitted to 3 quantiles predicted for X by forecaster A (as in Metaculus' questions which do not involve forecasting probabilities). * X2 could be a distribution fitted to 3 quantiles predicted for X by forecaster B. Meanwhile, I have realised the inverse-variance method minimises the variance of a weighted mean of X1 and X2 (and have updated the question above to reflect this).
Curated and popular this week
 ·  · 8m read
 · 
Around 1 month ago, I wrote a similar Forum post on the Easterlin Paradox. I decided to take it down because: 1) after useful comments, the method looked a little half-baked; 2) I got in touch with two academics – Profs. Caspar Kaiser and Andrew Oswald – and we are now working on a paper together using a related method.  That blog post actually came to the opposite conclusion, but, as mentioned, I don't think the method was fully thought through.  I'm a little more confident about this work. It essentially summarises my Undergraduate dissertation. You can read a full version here. I'm hoping to publish this somewhere, over the Summer. So all feedback is welcome.  TLDR * Life satisfaction (LS) appears flat over time, despite massive economic growth — the “Easterlin Paradox.” * Some argue that happiness is rising, but we’re reporting it more conservatively — a phenomenon called rescaling. * I test this hypothesis using a large (panel) dataset by asking a simple question: has the emotional impact of life events — e.g., unemployment, new relationships — weakened over time? If happiness scales have stretched, life events should “move the needle” less now than in the past. * That’s exactly what I find: on average, the effect of the average life event on reported happiness has fallen by around 40%. * This result is surprisingly robust to various model specifications. It suggests rescaling is a real phenomenon, and that (under 2 strong assumptions), underlying happiness may be 60% higher than reported happiness. * There are some interesting EA-relevant implications for the merits of material abundance, and the limits to subjective wellbeing data. 1. Background: A Happiness Paradox Here is a claim that I suspect most EAs would agree with: humans today live longer, richer, and healthier lives than any point in history. Yet we seem no happier for it. Self-reported life satisfaction (LS), usually measured on a 0–10 scale, has remained remarkably flat over the last f
 ·  · 3m read
 · 
We’ve redesigned effectivealtruism.org to improve understanding and perception of effective altruism, and make it easier to take action.  View the new site → I led the redesign and will be writing in the first person here, but many others contributed research, feedback, writing, editing, and development. I’d love to hear what you think, here is a feedback form. Redesign goals This redesign is part of CEA’s broader efforts to improve how effective altruism is understood and perceived. I focused on goals aligned with CEA’s branding and growth strategy: 1. Improve understanding of what effective altruism is Make the core ideas easier to grasp by simplifying language, addressing common misconceptions, and showcasing more real-world examples of people and projects. 2. Improve the perception of effective altruism I worked from a set of brand associations defined by the group working on the EA brand project[1]. These are words we want people to associate with effective altruism more strongly—like compassionate, competent, and action-oriented. 3. Increase impactful actions Make it easier for visitors to take meaningful next steps, like signing up for the newsletter or intro course, exploring career opportunities, or donating. We focused especially on three key audiences: * To-be direct workers: young people and professionals who might explore impactful career paths * Opinion shapers and people in power: journalists, policymakers, and senior professionals in relevant fields * Donors: from large funders to smaller individual givers and peer foundations Before and after The changes across the site are aimed at making it clearer, more skimmable, and easier to navigate. Here are some side-by-side comparisons: Landing page Some of the changes: * Replaced the economic growth graph with a short video highlighting different cause areas and effective altruism in action * Updated tagline to "Find the best ways to help others" based on testing by Rethink
 ·  · 4m read
 · 
Summary I’m excited to announce a “Digital Sentience Consortium” hosted by Longview Philanthropy, in collaboration with The Navigation Fund and Macroscopic Ventures, to support research and applied projects focused on the potential consciousness, sentience, moral status, and experiences of artificial intelligence systems. The opportunities include research fellowships, career transition fellowships, and a broad request for proposals for applied work on these topics.  For years, I’ve thought this area was seriously overlooked. It now has growing interest. Twenty-two out of 123 pages of  Claude 4’s model card are about its potential moral patienthood. Scientific experts increasingly say that near-term AI sentience is a real possibility; even the skeptical neuroscientist Anil Seth says, “it is unwise to dismiss the possibility altogether.” We’re hoping to bring new people and projects into the field to increase the chance that society deals with the possibility of digital sentience reasonably, and with concern for all involved. * Apply to Research Fellowship * Apply to Career Transition Fellowship * Apply to Request for Proposals Motivation & Focus For about as long as I’ve been reading about transformative AI, I’ve wondered whether society would face critical decisions involving AI sentience. Until recently, I thought there was not much to be done here besides perhaps more philosophy of mind and perhaps some ethics—and I was not sure these approaches would make much progress.  Now, I think there are live areas where people can contribute: * Technically informed research on which AI systems are sentient, like this paper applying existing theories of consciousness to a few AI architectures. * Innovative approaches to investigate sentience, potentially in a way that avoids having to take a stand on a particular theory of consciousness, like work on  AI introspection. * Political philosophy and policy research on the proper role of AI in society. * Work to ed