Many EAs see AI Alignment research efforts as an important route to mitigating x-risk from AGI. However, others are concerned that alignment research overall increases x-risk by accelerating AGI timelines. I think Michael Nielsen explains this well:

"Practical alignment work makes today's AI systems far more attractive to customers, far more usable as a platform for building other systems, far more profitable as a target for investors, and far more palatable to governments. The net result is that practical alignment work is accelerationist."

 

I think we can distinguish between two broad subtypes of alignment efforts: 1) "implementing guardrails" and 2) "improving goal-directedness". 

I would categorise approaches such as running AI models on custom chips, emergency shutdown mechanisms, red teaming, risk assessments, dangerous capability evaluations and safety incident reporting as "implementing guardrails". This can be thought of as getting AI systems to not do the worst thing possible.

I would categorise approaches such as RLHF and reward shaping as "improving goal-directedness". This could also be thought of as getting AI systems to do the best thing possible.

I think "implementing guardrails" has much weaker acceleration effects than "improving goal-directedness". An AI system which can be shutdown and does not show dangerous capabilities, is still not very useful if it can't be directed towards the specific goal of the user.

 

So I think people who are worried that AI Alignment efforts might be net-negative because of acceleration effects should consider prioritising "implementing guardrails" approaches to AI Alignment.

13

0
0

Reactions

0
0
Comments2


Sorted by Click to highlight new comments since:

Both approaches are important components of a comprehensive AI safety strategy. With that said, I think that improving goal-directedness (as you've defined it here) is likely to yield more fruitful long-term results for AI safety because: 

  1. A sufficiently advanced AGI (what is often labeled ASI, above human level) could outsmart any guardrails implemented by humans given enough time and compute power
  2. Guardrails seem (as you mentioned) to be specifically an approach dedicated stopping an unaligned AI from causing damage. It does not actually get us closer to an aligned AI. If our goal is alignment, why should the primary focus be on an activity that doesn't get us any closer to aligning an AI?

Thanks for your comment!

I think a sufficiently intelligent ASI is equally likely to outsmart human goal-directedness efforts as it is to outsmart guardrails.

I think number 2 is a good point.

There are many people who actively want to create an aligned ASI as soon as possible to reap its benefits, for whom my suggestion is not useful.

But there are others who primarily want to prevent the creation of a misaligned ASI, and are willing to forgo the creation of an ASI if necessary.

There are also others who want to create an aligned ASI, but are willing to considerably delay this to improve the chances that the ASI is aligned.

I think my suggestion is mainly useful for these second and third groups.

Curated and popular this week
 ·  · 11m read
 · 
Confidence: Medium, underlying data is patchy and relies on a good amount of guesswork, data work involved a fair amount of vibecoding.  Intro:  Tom Davidson has an excellent post explaining the compute bottleneck objection to the software-only intelligence explosion.[1] The rough idea is that AI research requires two inputs: cognitive labor and research compute. If these two inputs are gross complements, then even if there is recursive self-improvement in the amount of cognitive labor directed towards AI research, this process will fizzle as you get bottlenecked by the amount of research compute.  The compute bottleneck objection to the software-only intelligence explosion crucially relies on compute and cognitive labor being gross complements; however, this fact is not at all obvious. You might think compute and cognitive labor are gross substitutes because more labor can substitute for a higher quantity of experiments via more careful experimental design or selection of experiments. Or you might indeed think they are gross complements because eventually, ideas need to be tested out in compute-intensive, experimental verification.  Ideally, we could use empirical evidence to get some clarity on whether compute and cognitive labor are gross complements; however, the existing empirical evidence is weak. The main empirical estimate that is discussed in Tom's article is Oberfield and Raval (2014), which estimates the elasticity of substitution (the standard measure of whether goods are complements or substitutes) between capital and labor in manufacturing plants. It is not clear how well we can extrapolate from manufacturing to AI research.  In this article, we will try to remedy this by estimating the elasticity of substitution between research compute and cognitive labor in frontier AI firms.  Model  Baseline CES in Compute To understand how we estimate the elasticity of substitution, it will be useful to set up a theoretical model of researching better alg
 ·  · 8m read
 · 
Around 1 month ago, I wrote a similar Forum post on the Easterlin Paradox. I decided to take it down because: 1) after useful comments, the method looked a little half-baked; 2) I got in touch with two academics – Profs. Caspar Kaiser and Andrew Oswald – and we are now working on a paper together using a related method.  That blog post actually came to the opposite conclusion, but, as mentioned, I don't think the method was fully thought through.  I'm a little more confident about this work. It essentially summarises my Undergraduate dissertation. You can read a full version here. I'm hoping to publish this somewhere, over the Summer. So all feedback is welcome.  TLDR * Life satisfaction (LS) appears flat over time, despite massive economic growth — the “Easterlin Paradox.” * Some argue that happiness is rising, but we’re reporting it more conservatively — a phenomenon called rescaling. * I test this hypothesis using a large (panel) dataset by asking a simple question: has the emotional impact of life events — e.g., unemployment, new relationships — weakened over time? If happiness scales have stretched, life events should “move the needle” less now than in the past. * That’s exactly what I find: on average, the effect of the average life event on reported happiness has fallen by around 40%. * This result is surprisingly robust to various model specifications. It suggests rescaling is a real phenomenon, and that (under 2 strong assumptions), underlying happiness may be 60% higher than reported happiness. * There are some interesting EA-relevant implications for the merits of material abundance, and the limits to subjective wellbeing data. 1. Background: A Happiness Paradox Here is a claim that I suspect most EAs would agree with: humans today live longer, richer, and healthier lives than any point in history. Yet we seem no happier for it. Self-reported life satisfaction (LS), usually measured on a 0–10 scale, has remained remarkably flat over the last f
 ·  · 7m read
 · 
Crossposted from my blog.  When I started this blog in high school, I did not imagine that I would cause The Daily Show to do an episode about shrimp, containing the following dialogue: > Andres: I was working in investment banking. My wife was helping refugees, and I saw how meaningful her work was. And I decided to do the same. > > Ronny: Oh, so you're helping refugees? > > Andres: Well, not quite. I'm helping shrimp. (Would be a crazy rug pull if, in fact, this did not happen and the dialogue was just pulled out of thin air).   But just a few years after my blog was born, some Daily Show producer came across it. They read my essay on shrimp and thought it would make a good daily show episode. Thus, the Daily Show shrimp episode was born.   I especially love that they bring on an EA critic who is expected to criticize shrimp welfare (Ronny primes her with the declaration “fuck these shrimp”) but even she is on board with the shrimp welfare project. Her reaction to the shrimp welfare project is “hey, that’s great!” In the Bible story of Balaam and Balak, Balak King of Moab was peeved at the Israelites. So he tries to get Balaam, a prophet, to curse the Israelites. Balaam isn’t really on board, but he goes along with it. However, when he tries to curse the Israelites, he accidentally ends up blessing them on grounds that “I must do whatever the Lord says.” This was basically what happened on the Daily Show. They tried to curse shrimp welfare, but they actually ended up blessing it! Rumor has it that behind the scenes, Ronny Chieng declared “What have you done to me? I brought you to curse my enemies, but you have done nothing but bless them!” But the EA critic replied “Must I not speak what the Lord puts in my mouth?”   Chieng by the end was on board with shrimp welfare! There’s not a person in the episode who agrees with the failed shrimp torture apologia of Very Failed Substacker Lyman Shrimp. (I choked up a bit at the closing song about shrimp for s