Given 2 distributions and which are independent estimates of the distribution , this be estimated with the inverse-variance method from:
- .
Under which conditions is this a good aproach? For example, for which types of distributions? These questions might be relevant for determining:
- A posterior distribution based on distributions for the prior and estimate.
- A distribution which combines estimates of different theories.
Some notes:
- The inverse-variance method minimises the variance of a weighted mean of and .
- Calculating and according to the above formula would result in a mean and variance equal to those derived in this analysis from Dario Amodei, which explains how to combine and following a Bayesian approach if these follow normal distributions.
I don't think I follow. Monte Carlo sampling is done from a distribution, which I assume you want to use as the basis of your likelihood function? In this case, you can just calculate the likelihood function from this distribution, and combine it with your prior to get a posterior distribution.