Early last month, Leopold Aschenbrenner released a long essay and podcast outlining his projections for the future of AI. Both of these sources are full of interesting arguments and evidence, for a comprehensive summary see Zvi’s post here. Rather than going point by point I will instead accept the major premises of Leopold’s essay but contest some of his conclusions.

So what are the major premises of his piece?

  1. There will be several orders of magnitude increase in investment into AI. 100x more spending, 100x more compute, 100x more efficient algorithms, and an order of magnitude or two gains from some form of “learning by doing” or “unhobbling” on top.
  2. This investment scale up will be sufficient to achieve AGI. This means the models on the other side of the predicted compute scale up will be able to automate all cognitive jobs with vast scale and speed.
  3. These capabilities will be essential to international military competition.

All of these premises are believable to me and well-argued for in Leopold’s piece.

Leopold contends that these premises imply that the national security state will take over AI research and the major data centers, locking down national secrets in a race against China, akin to the Manhattan project.

Ultimately, my main claim here is descriptive: whether we like it or not, superintelligence won’t look like an SF startup, and in some way will be primarily in the domain of national security.

By late 26/27/28 … the core AGI research team (a few hundred researchers) will move to a secure location; the trillion-dollar cluster will be built in record-speed; The Project will be on.  

The main problem is that Leopold’s premises can be applied to conclude that other technologies will also inevitably lead to a Manhattan project, but these projects never arrived. Consider electricity. It's an incredibly powerful technology with rapid scale up, sufficient to empower those who have it far beyond those who don’t and it is essential to military competition. Every tank and missile and all the tech to manufacture them relies on electricity. But there was never a Manhattan project for this technology. It’s initial invention and spread was private and decentralized. The current sources of production and use are mostly private.

This is true of most other technologies with military uses: explosives, steel, computing, the internet, etc. All of these technologies are essential in the government’s monopoly on violence and it’s ability to exert power over other nations and prevent coups from internal actors. But the government remains a mere customer of these technologies and often not even the largest one.

Why is this? Large scale nationalization is costly and unnecessary for maintaining national secrets and technological superiority. Electricity and jet engines are essential for B-2 bombers, but if you don't have the particular engineers and blueprints, you can't build it. So, the government doesn’t need to worry about locking down the secrets of electricity production and sending all of the engineers to Los Alamos. They can keep the first several steps of the production process completely open and mix the outputs with a final few steps that are easier to keep secret.

To be clear, I am confident that governments and militaries will be extremely interested in AI. They will be important customers for many AI firms, they will create internal AI tools, and AI will become an important input into every major military. But this does not mean that most or all of the AI supply chain, from semi-conductors to data-centers to AI research, must be controlled by governments.

Nuclear weapons are outliers among weapons technology in terms of the proportion of the supply chain and final demand directly overseen by governments. Most military technologies rely on an open industrial base mixed with some secret knowledge in the final few production steps.

So should we expect AGI to be more like nuclear weapons or like a new form of industrial capacity? This depends on how much extra scaffolding you need on top of the base model computation that’s piped out of data centers to achieve militarily relevant goals.

Leopold’s unhobbling story supports a view where the intelligence produced by massive datacenters is more like the raw input of electricity, which needs to be combined with other materials and processes to make a weapon, than a nuclear bomb which is a weapon and only a weapon right out the box.

Leopold on base models says:

out of the box, they’re hobbled: they’re using their incredible internal representations merely to predict the next token in random internet text, and rather than applying them in the best way to actually try to solve your problem.”

“On SWE-Bench (a benchmark of solving real-world software engineering tasks), GPT4 can only solve ~2% correctly, while with Devin’s agent scaffolding it jumps to 14-23%. (Unlocking agency is only in its infancy though)”

Devin can have a product without a proprietary model because they have a scaffold. They can safely contract for and pipe in the raw resource latent model and put it through a production process to get something uniquely tooled out the other end, without needing to in-house and lock-down the base model to maintain a unique product.

Of current chatbots Leopold says:

“They’re mostly not personalized to you or your application (just a generic chatbot with a short prompt, rather than having all the relevant background on your company and your work)”

Context is that which is scarce! The national security state needn’t lock down the base models if the models are hobbled without the context of their secret applications. That context is already something they’re already extremely skilled at locking down, and it doesn’t require enlisting an entire industry.

“In a few years, it will be clear that the AGI secrets are the United States’ most important national defense secrets—deserving treatment on par with B-21 bomber or Columbia-class submarine blueprints”

Leopold is predicting the nationalization of an entire industrial base based on an analogy to submarines and bombers, but a large fraction of the supply chain for these vehicles are private and open. It’s not clear why he thinks military applications of AGI can’t be similarly protected without control over the majority of the supply chain and final demand.

If you imagine AGI as this single, powerful oracle and army that can complete any and all tasks on command, then Leopold is right: governments will fight hard to lock everyone else out. If instead, AGI is a sort of “intelligence on tap” which is an input to thousands of different production processes where it’s mixed with different infrastructure, context, and tools to create lots of different products, then governments don’t need to control the entire industrial base producing this intelligence to keep their secrets. Leopold leans hard on the Manhattan project as a close analogy to the first situation, but most military technologies are in the second camp.

53

2
1

Reactions

2
1

More posts like this

Comments2


Sorted by Click to highlight new comments since:

Executive summary: The author argues against the inevitability of an AI Manhattan Project, contending that governments can maintain technological superiority without nationalizing the entire AI industry.

Key points:

  1. The author accepts premises about massive AI investment and capabilities but contests the conclusion of government takeover.
  2. Historical precedent shows most technologies with military applications remain largely private (e.g., electricity, computing).
  3. Governments can maintain secrecy by controlling only the final steps of production, not entire supply chains.
  4. AI may be more like a general industrial input (like electricity) than a standalone weapon (like nuclear bombs).
  5. The "unhobbling" of AI models suggests raw AI capabilities may need significant context and scaffolding for specific applications.
  6. Military AI applications could potentially be protected without controlling the entire AI industry and infrastructure.

 

 

This comment was auto-generated by the EA Forum Team. Feel free to point out issues with this summary by replying to the comment, and contact us if you have feedback.

My understanding of your main claim: If AGI is not a magic problem-solving oracle and is instead limited by needing to be unhobbled and integrated with complex infrastructure, it will be relatively safe for model weights to be available to foreign adversaries. Or at least key national security decision makers will believe that's the case. 

Please correct me if I'm wrong. My thoughts on the above:

Where is this relative safety coming from? Is it from expecting that adversaries aren't going to be able to figure out how to do unhobbling or steal the necessary secrets to do unhobbling? Is it from expecting the unhobbling and building infrastrucure around AIs to be a really hard endeavor? 

The way I'm viewing this picture, AI that can integrate all across the economy, even if that takes substantial effort, is a major threat to global stability and US dominance. 

I guess you can think about the AI-for-productive-purposes supply chain as having two components: Develop the powerful AI model (Initial development), and unhobble it / integrate it in workflows / etc. (Unhobbling/Integration). And you're arguing that the second of these will be an acceptable place to focus restrictions. My intuition says we will want restrictions on both, but more on the part that is most expensive or excludable (e.g., AI chips being concentrated is a point for initial development). It's not clear to me what the cost of both supply chain steps is: Currently, it looks like pre-training costs are higher than fine-tuning costs (point for initial development); but actually integrating AIs across the economy seems very expensive to do, the economy is really big (point for unhobbling/integration) (this depends a lot on the systems at the time and how easy they are to work with). 

Curated and popular this week
 ·  · 25m read
 · 
Epistemic status: This post — the result of a loosely timeboxed ~2-day sprint[1] — is more like “research notes with rough takes” than “report with solid answers.” You should interpret the things we say as best guesses, and not give them much more weight than that. Summary There’s been some discussion of what “transformative AI may arrive soon” might mean for animal advocates. After a very shallow review, we’ve tentatively concluded that radical changes to the animal welfare (AW) field are not yet warranted. In particular: * Some ideas in this space seem fairly promising, but in the “maybe a researcher should look into this” stage, rather than “shovel-ready” * We’re skeptical of the case for most speculative “TAI<>AW” projects * We think the most common version of this argument underrates how radically weird post-“transformative”-AI worlds would be, and how much this harms our ability to predict the longer-run effects of interventions available to us today. Without specific reasons to believe that an intervention is especially robust,[2] we think it’s best to discount its expected value to ~zero. Here’s a brief overview of our (tentative!) actionable takes on this question[3]: ✅ Some things we recommend❌ Some things we don’t recommend * Dedicating some amount of (ongoing) attention to the possibility of “AW lock ins”[4]  * Pursuing other exploratory research on what transformative AI might mean for animals & how to help (we’re unconvinced by most existing proposals, but many of these ideas have received <1 month of research effort from everyone in the space combined — it would be unsurprising if even just a few months of effort turned up better ideas) * Investing in highly “flexible” capacity for advancing animal interests in AI-transformed worlds * Trying to use AI for near-term animal welfare work, and fundraising from donors who have invested in AI * Heavily discounting “normal” interventions that take 10+ years to help animals * “Rowing” on na
 ·  · 3m read
 · 
About the program Hi! We’re Chana and Aric, from the new 80,000 Hours video program. For over a decade, 80,000 Hours has been talking about the world’s most pressing problems in newsletters, articles and many extremely lengthy podcasts. But today’s world calls for video, so we’ve started a video program[1], and we’re so excited to tell you about it! 80,000 Hours is launching AI in Context, a new YouTube channel hosted by Aric Floyd. Together with associated Instagram and TikTok accounts, the channel will aim to inform, entertain, and energize with a mix of long and shortform videos about the risks of transformative AI, and what people can do about them. [Chana has also been experimenting with making shortform videos, which you can check out here; we’re still deciding on what form her content creation will take] We hope to bring our own personalities and perspectives on these issues, alongside humor, earnestness, and nuance. We want to help people make sense of the world we're in and think about what role they might play in the upcoming years of potentially rapid change. Our first long-form video For our first long-form video, we decided to explore AI Futures Project’s AI 2027 scenario (which has been widely discussed on the Forum). It combines quantitative forecasting and storytelling to depict a possible future that might include human extinction, or in a better outcome, “merely” an unprecedented concentration of power. Why? We wanted to start our new channel with a compelling story that viewers can sink their teeth into, and that a wide audience would have reason to watch, even if they don’t yet know who we are or trust our viewpoints yet. (We think a video about “Why AI might pose an existential risk”, for example, might depend more on pre-existing trust to succeed.) We also saw this as an opportunity to tell the world about the ideas and people that have for years been anticipating the progress and dangers of AI (that’s many of you!), and invite the br
 ·  · 3m read
 · 
Hi all, This is a one time cross-post from my substack. If you like it, you can subscribe to the substack at tobiasleenaert.substack.com. Thanks Gaslit by humanity After twenty-five years in the animal liberation movement, I’m still looking for ways to make people see. I’ve given countless talks, co-founded organizations, written numerous articles and cited hundreds of statistics to thousands of people. And yet, most days, I know none of this will do what I hope: open their eyes to the immensity of animal suffering. Sometimes I feel obsessed with finding the ultimate way to make people understand and care. This obsession is about stopping the horror, but it’s also about something else, something harder to put into words: sometimes the suffering feels so enormous that I start doubting my own perception - especially because others don’t seem to see it. It’s as if I am being gaslit by humanity, with its quiet, constant suggestion that I must be overreacting, because no one else seems alarmed. “I must be mad” Some quotes from the book The Lives of Animals, by South African writer and Nobel laureate J.M. Coetzee, may help illustrate this feeling. In his novella, Coetzee speaks through a female vegetarian protagonist named Elisabeth Costello. We see her wrestle with questions of suffering, guilt and responsibility. At one point, Elisabeth makes the following internal observation about her family’s consumption of animal products: “I seem to move around perfectly easily among people, to have perfectly normal relations with them. Is it possible, I ask myself, that all of them are participants in a crime of stupefying proportions? Am I fantasizing it all? I must be mad!” Elisabeth wonders: can something be a crime if billions are participating in it? She goes back and forth on this. On the one hand she can’t not see what she is seeing: “Yet every day I see the evidences. The very people I suspect produce the evidence, exhibit it, offer it to me. Corpses. Fragments of