Hide table of contents

Hello all, 

My goal is to learn some basic math + programming skills as quickly as possible, so that I can read research papers without being tripped up by the math, and because they are by far my weakest skill area at the moment and feel like a bottleneck for me. My plan is to spend 15-25 hours a week on this for the next five months and experiment with what works best. 

My background: 

  • Have not taken a math class since completing Calculus.
  • 1 year of intro CS classes only covering C++

These are my current ideas on what I should learn: 

  • Programming
    • Python
    • Data Structures + Algorithms
    • Machine Learning
  • Math
    • Statistics / Probability
    • Linear Algebra
    • Multivariable Calculus

 

My hypothesis on what would work fastest is to hire a tutor for each of these topics from Bountied Rationality and work through the most highly recommended textbook on each topic (I suspect this would work better for math than for programming). Other than that, the options I’m currently aware of for learning are taking lectures from Coursera, Codecademy, and various coding BootCamps. 
 

My Current Questions: 

  • What textbooks would you recommend for these topics? (Right now my list is only “Linear Algebra Done Right”)
  • What other ideas do folks have for learning these topics that I can experiment with?
  • What other topics might I be overlooking?
  • What other feedback might you have for me?


 

Thank you so much!


 

15

0
0

Reactions

0
0
New Answer
New Comment

6 Answers sorted by

I've also been self-teaching myself similar topics. Reading books and working through the exercises works much better for me personally than watching videos. For Python, I recommend Think Python 2e, which is freely available here, and Charles Severance's Python for Everybody on FreeCodeCamp. For Machine Learning, the gold standard is An Introduction to Statistical Learning. The exercises are in R, but I think you can find Python versions somewhere on the internet.

For Statistics and Probability I used OpenIntro, but I've also got Pishro-Nik's Introduction to Probability, Statistics, and Random Processes on my list as a more advanced next book. For Differential Equations and Linear Algebra, I'm using Strang's book of the same name, and the associated MIT OCW lectures.

Send me a PM if you'd like to discuss further!

My advice for math is that it's often possible to think you understand something even if you don't, so it's good to do at least some exercises. Also, the methodology, and general "mathematical maturity" is often what you'll reuse the most in research - being able to reason by following specific allowed/disallowed steps, and knowing that you can understand a claim by reading Wolfram Mathworld, Wikipedia, textbooks, etc. So to some extent it doesn't matter so much what you learn, as that you learn something well. Having said that, the first half of a math textbook tends to be much more useful than the second half - there are diminishing returns in each subfield.

For programming, the same is often true - what you're aiming to get is a general sort of maturity, and comfort with debugging and building programs. So probably you want to mostly read tutorials for initial few weeks, then mostly do a project after that.

In both cases, I agree that a tutor is super-useful for getting unstuck, if you have the luxury of being able to afford one.

A couple of things which will be really helpful:

Not at the start but very useful for once you're starting to read papers.

IMHO the single best educational youtuber - There's a series on linear algebra, another on neural networks, and even one on calculus. 

The videos on their own won't be enough to learn, but they are a fantastic supplement and visualisation prompt.

I flipping love 3b1b. The linear algebra and calculus series are particularly great.

What textbooks would you recommend for these topics? (Right now my list is only “Linear Algebra Done Right”)

The best textbooks on every subject from lesswrong.

Thank you Caleb I have combed through this!

IMO, talking with someone experienced is very much worth it, even if only to understand better what to study in your situation. Or to get feedback on your exercise sheet write-ups.

Besides, I strongly recommend you find someone at your level who wants to learn these subjects as well, so you can meet regularly and discuss exercises/unclear points for free. Discussing your half-formed ideas is more fun and results in faster learning if you can unstick/learn by explaining to each other.

Some more points:

  1. The core of learning math and theoretical CS is doing exercises/working with the concepts in your mind, writing down your proofs, and getting hints/corrections from time to time, rather than reading, watching, or rote-memorizing something. The idea is that, while doing that, one processes the material enough to become comfortable with it...
  2. When learning a subject from the ground up, I prefer studying from lecture notes to studying a book for several reasons:
    1. They show how many "credit points" they are worth, so you roughly know how much time you'd spend on them. You can also get a better idea of the prerequisite knowledge.
    2. As mentioned by RyanCarey, studying all of a book hits diminishing returns. But making a good selection is hard to impossible - unless you are a professor preparing lecture notes.
    3. You get a better model of your knowledge after working through an entire lecture vs a part of a book. You can use this to understand what material you are ready for next, job interviews etc.

Active learning (as in brilliant.org) seems worth a try to me as well, but I don't know if it is comprehensive enough.

Usually, lecture notes are based on (and share notation with) one or a few books, which you can fall back on if you don't understand something.

I'd be happy to tutor you; I'll PM you more information about me :)

What textbooks would you recommend for these topics? (Right now my list is only “Linear Algebra Done Right”)

I would recommend not starting with Linear Algebra Done Right unless you already know the basics of linear algebra. The book does not cover some basic material (like row reduction, elementary matrices, solving linear equations) and instead focuses on trying to build up the theory of linear algebra in a "clean" way, which makes it enlightening as a second or third exposure to linear algebra but a cruel way to be introduced to the subject for the first time. I think 3Blue1Brown videos → Vipul Naik's lecture notes → 3Blue1Brown videos (again) → Gilbert Strang-like books/Treil's Linear Algebra Done Wrong → 3Blue1Brown videos (yet again) → Linear Algebra Done Right would provide a much smoother experience. (See also this comment that I wrote a while ago.)

Curated and popular this week
 ·  · 22m read
 · 
The cause prioritization landscape in EA is changing. Prominent groups have shut down, others have been founded, and everyone’s trying to figure out how to prepare for AI. This is the third in a series of posts critically examining the state of cause prioritization and strategies for moving forward. Executive Summary * An increasingly common argument is that we should prioritize work in AI over work in other cause areas (e.g. farmed animal welfare, reducing nuclear risks) because the impending AI revolution undermines the value of working in those other areas. * We consider three versions of the argument: * Aligned superintelligent AI will solve many of the problems that we currently face in other cause areas. * Misaligned AI will be so disastrous that none of the existing problems will matter because we’ll all be dead or worse. * AI will be so disruptive that our current theories of change will all be obsolete, so the best thing to do is wait, build resources, and reformulate plans until after the AI revolution. * We identify some key cruxes of these arguments, and present reasons to be skeptical of them. A more direct case needs to be made for these cruxes before we rely on them in making important cause prioritization decisions. * Even on short timelines, the AI transition may be a protracted and patchy process, leaving many opportunities to act on longer timelines. * Work in other cause areas will often make essential contributions to the AI transition going well. * Projects that require cultural, social, and legal changes for success, and projects where opposing sides will both benefit from AI, will be more resistant to being solved by AI. * Many of the reasons why AI might undermine projects in other cause areas (e.g. its unpredictable and destabilizing effects) would seem to undermine lots of work on AI as well. * While an impending AI revolution should affect how we approach and prioritize non-AI (and AI) projects, doing this wisel
 ·  · 4m read
 · 
TLDR When we look across all jobs globally, many of us in the EA community occupy positions that would rank in the 99.9th percentile or higher by our own preferences within jobs that we could plausibly get.[1] Whether you work at an EA-aligned organization, hold a high-impact role elsewhere, or have a well-compensated position which allows you to make significant high effectiveness donations, your job situation is likely extraordinarily fortunate and high impact by global standards. This career conversations week, it's worth reflecting on this and considering how we can make the most of these opportunities. Intro I think job choice is one of the great advantages of development. Before the industrial revolution, nearly everyone had to be a hunter-gatherer or a farmer, and they typically didn’t get a choice between those. Now there is typically some choice in low income countries, and typically a lot of choice in high income countries. This already suggests that having a job in your preferred field puts you in a high percentile of job choice. But for many in the EA community, the situation is even more fortunate. The Mathematics of Job Preference If you work at an EA-aligned organization and that is your top preference, you occupy an extraordinarily rare position. There are perhaps a few thousand such positions globally, out of the world's several billion jobs. Simple division suggests this puts you in roughly the 99.9999th percentile of job preference. Even if you don't work directly for an EA organization but have secured: * A job allowing significant donations * A position with direct positive impact aligned with your values * Work that combines your skills, interests, and preferred location You likely still occupy a position in the 99.9th percentile or higher of global job preference matching. Even without the impact perspective, if you are working in your preferred field and preferred country, that may put you in the 99.9th percentile of job preference
 ·  · 5m read
 · 
Summary Following our co-founder Joey's recent transition announcement we're actively searching for exceptional leadership to join our C-level team and guide AIM into its next phase. * Find the full job description here * To apply, please visit the following link * Recommend someone you think could be a great fit here * Location: London strongly preferred. Remote candidates willing to work from London at least 3 months a year and otherwise overlapping at least 6 hours with 9 am to 5 pm BST will be considered. We are happy to sponsor UK work visas. * Employment Type: Full-time (35 hours) * Application Deadline: rolling until August 10, 2025 * Start Date: as soon as possible (with some flexibility for the right candidate) * Compensation: £45,000–£90,000 (for details on our compensation policy see full job description) Leadership Transition On March 15th, Joey announced he's stepping away from his role as CEO of AIM, with his planned last day as December 1st. This follows our other co-founder Karolina's completed transition in 2024. Like Karolina, Joey will transition to a board member role while we bring in new leadership to guide AIM's next phase of growth. The Opportunity AIM is at a unique inflection point. We're seeking an exceptional leader to join Samantha and Devon on our C-level team and help shape the next era of one of the most impactful organizations in the EA ecosystem. With foundations established (including a strong leadership team and funding runway), we're ready to scale our influence dramatically and see many exciting pathways to do so. While the current leadership team has a default 2026 strategic plan, we are open to a new CEO proposing radical departures. This might include: * Proposing alternative ways to integrate or spin off existing or new programs * Deciding to spend more resources trialling more experimental programs, or double down on Charity Entrepreneurship * Expanding geographically or deepening impact in existing region