As a summer research fellow at FHI, I’ve been working on using economic theory to better understand the relationship between economic growth and existential risk. I’ve finished a preliminary draft; see below. I would be very interesting in hearing your thoughts and feedback!
Draft: leopoldaschenbrenner.com/xriskandgrowth
Abstract:
Technological innovation can create or mitigate risks of catastrophes—such as nuclear war, extreme climate change, or powerful artificial intelligence run amok—that could imperil human civilization. What is the relationship between economic growth and these existential risks? In a model of endogenous and directed technical change, with moderate parameters, existential risk follows a Kuznets-style inverted U-shape. This suggests we could be living in a unique “time of perils,” having developed technologies advanced enough to threaten our permanent destruction, but not having grown wealthy enough yet to be willing to spend much on safety. Accelerating growth during this “time of perils” initially increases risk, but improves the chances of humanity's survival in the long run. Conversely, even short-term stagnation could substantially curtail the future of humanity. Nevertheless, if the scale effect of existential risk is large and the returns to research diminish rapidly, it may be impossible to avert an eventual existential catastrophe.
Thanks!
Regarding your question, yes, you have the right idea. Growth of consumption per capita is growth in consumption technology plus growth in consumption work per capita — thus, while the fraction of workers in the consumption sector declines exponentially, consumption technology grows (due to increasing returns) quickly enough to offset that. This yields positive asymptotic growth of consumption per capita overall (on the specific asymptotic paths you are referring to). Note that the absolute total number of people working consumption *research* is still increasing on the asymptotic path: while the fraction of scientists in the consumption sector declines exponentially, there is still overall population growth. This yields the asymptotic growth in consumption technology (but this growth is slower than what would be feasible, since scientists are being shifted away from consumption). Does that make sense?