[[THIRD EDIT: Thanks so much for all of the questions and comments! There are still a few more I'd like to respond to, so I may circle back to them a bit later, but, due to time constraints, I'm otherwise finished up for now. Any further comments or replies to anything I've written are also still be appreciated!]]
Hi!
I'm Ben Garfinkel, a researcher at the Future of Humanity Institute. I've worked on a mixture of topics in AI governance and in the somewhat nebulous area FHI calls "macrostrategy", including: the long-termist case for prioritizing work on AI, plausible near-term security issues associated with AI, surveillance and privacy issues, the balance between offense and defense, and the obvious impossibility of building machines that are larger than humans.
80,000 Hours recently released a long interview I recorded with Howie Lempel, about a year ago, where we walked through various long-termist arguments for prioritizing work on AI safety and AI governance relative to other cause areas. The longest and probably most interesting stretch explains why I no longer find the central argument in Superintelligence, and in related writing, very compelling. At the same time, I do continue to regard AI safety and AI governance as high-priority research areas.
(These two slide decks, which were linked in the show notes, give more condensed versions of my views: "Potential Existential Risks from Artificial Intelligence" and "Unpacking Classic Arguments for AI Risk." This piece of draft writing instead gives a less condensed version of my views on classic "fast takeoff" arguments.)
Although I'm most interested in questions related to AI risk and cause prioritization, feel free to ask me anything. I'm likely to eventually answer most questions that people post this week, on an as-yet-unspecified schedule. You should also feel free just to use this post as a place to talk about the podcast episode: there was a thread a few days ago suggesting this might be useful.
I think that instead of talking about potential failures in the way the EA community prioritized AI risk, it might be better to talk about something more concrete, e.g.
I think if we think there were mistakes in the concrete actions people have taken, e.g. mistaken funding decisions or mistaken career changes (I’m not sure that there were), we should look at the process that led to those decisions, and address that process directly.
Targeting ‘the views of the average EA’ seems pretty hard. I do think it might be important, because it has downstream effects on things like recruitment, external perception, funding, etc. But then I think we need to have a story for how we affect the views of the average EA (as Ben mentions). My guess is that we don’t have a story like that, and that’s a big part of ‘what went wrong’-- the movement is growing in a chaotic way that no individual is responsible for, and that can lead to collectively bad epistemics.
‘Encouraging EAs to defer less’ and ‘expressing more public uncertainty’ could be part of the story for helping the average EA have better views. It also seems possible to me that we want some kind of centralized official source for presenting EA beliefs that keeps up to date the best case for and against certain views (though this obviously has its own issues). Then we can be more sure that people have come to their views after being exposed to alternatives, and we can have something concrete to point to when we worry that there hasn’t been enough criticism.