Social Effects
Beliefs are often entangled with social signals. This can pose difficulties for what I’ll call in the following a “truth-seeking community.”
When people want to disassociate from a disreputable group – say, because they’ve really never had anything to do with the group and don’t want that to change – they can do this in two ways: They can steer clear of anything that is associated with the disreputable group or they can actively signal their difference from the disreputable group.
Things that are associated with the disreputable group are, pretty much necessarily, things that are either sufficiently specific that they rarely come up randomly or things that are common but on which the group has an unusual, distinctive stance. Otherwise these things could not serve as distinguishing markers of the group.
If the disreputable group is small, is distinguished by an unusual focus on a specific topic, and a person wants to disassociate from them, it’s usually enough to steer clear of the specific topic, and no one will assume any association. Others will start out with a prior that the person < 1% likely to be part of the group, and absent signals to the contrary, will maintain that credence.
But if the disreputable group is larger, at least in one’s social vicinity, or the group’s focal topic is a common one, then one needs to countersignal more actively. Others may start out with a prior that the person is ~ 30% likely to be part of the group and may avoid contact with them unless they see strong signals to the contrary. This is where people will find it necessary to countersignal strongly. Moreover, once there is a norm to countersignal strongly, the absence of such a signal or a cheaper signal will be doubly noticeable.
I see two, sometimes coinciding, ways along which that can become a problem. First, the disreputable group may be so because of their values, which may be extreme or uncooperative, and it is just historical contingency that they endorse some distinctive belief. Or second, the group may be disreputable because they have a distinctive belief that is so unusual as to reflect badly on their intelligence or sanity.
The first of these is particularly problematic because the belief can be any random one with any random level of likelihood, quite divorced from the extreme, uncooperative values. It might also not be so divorced, e.g., if it is one that the group can exploit to their advantage if they convince the right people of it. But the second is problematic too.
If a community of people who want to optimize their collective decision-making (let’s call it a “truth-seeking community”) builds sufficiently complex models, e.g., to determine the likelihood of intelligent life re-evolving, then maybe at some point they’ll find that one node in their model (a Squiggle program, a Bayesian network, vel sim.) would be informed by more in-depth research of a question that is usually associated with a disreputable group. They can use sensitivity analysis to estimate the cost it would have to leave the node as it is, but maybe it turns out that their estimate is quite sensitive to that node.
In the first case, in the case of a group that is disreputable by dint of their values, that is clearly a bad catch-22.
But it can also go wrong in the second case, the case of the group that is disreputable because of their unusual beliefs, because people in the truth-seeking community will usually find it impossible to assign a probability of 0 to any statement. It might be that their model is very sensitive to whether they assign 0.1% or 1% likelihood to a disreputable belief. Then there’s a social cost also in the second case: Even though their credence is low either way, the truth-seeking community will risk being associated with a disreputable group (which may assign > 90% credence to the belief), because they engage with the belief.
I see five ways in which this is problematic:
- Exploitation of the community by bad actors: The truth-seeking community may be socially adroit, and people will actually grant them some sort of fool’s licence because they trust their intentions. But that may turn out to be exploitable: People with bad intentions may use the guise of being truth-seeking to garner attention and support while subtly manipulating their congregation toward their uncooperative values. (Others may only be interested in the attention.) Hence such a selective fool’s licence may erode societal defenses against extreme, uncooperative values and the polarization and fragmentation of society that they entail. Meanwhile the previously truth-seeking community may be overtaken by such people, who’ll be particularly drawn to its influential positions while being unintimidated with the responsibility that comes with these positions.
- Exploitation of the results of the research by bad actors: The same can be exploitable in that the truth-seeking community may find that some value-neutral belief is likely to be true. Regardless of how value-neutral the belief is, the disreputable group may well be able to cunningly reframe it to exploit and weaponize it for their purposes.
- Isolation of and attacks on the community: Conversely, the truth-seeking community may also not be sufficiently socially adroit and still conduct their research. Other powerful actors – potential cooperation partners – will consider the above two risks or will not trust the intentions of the truth-seeking community in the first place, and so will withhold their support from the community or even attack it. This may also make it hard to attract new contributors to the community.
- Internal fragmentation through different opinions: The question whether the sensitivity of the model to the controversial belief is high enough to warrant any attention may be a narrow one, one that is not stated and analyzed very explicitly, or one that is analyzed explicitly but through models that make contradictory predictions. In such a case it seems very likely that people will arrive at very different predictions as to whether it’s worse to ignore the belief or to risk the previous failure modes. This can lead to fragmentation, which often leads to the demise of a community.
- Internal fragmentation through lack of trust: The same internal fragmentation can also be the result of decreasing trust within the community because the community is being exploited or may be exploited by bad actors along the lines of failure mode 1.
- Collapse of the community due to stalled recruiting: This applies when the controversial belief is treated as a serious infohazard. It’s very hard to recruit people for research without being able to tell them what research you would like them to do. This can make recruiting very or even prohibitively expensive. Meanwhile there is usually some outflow of people from any community, so if the recruitment is too slow or fully stalled, the community may eventually vanish. This would be a huge waste especially if the bulk of the research is perfectly uncontroversial.
I have only very tentative ideas of how these risks can be alleviated:
- The community will need to conduct an appraisal, as comprehensive and unbiased as possible, of all the expected costs/harms that come with engaging with controversial beliefs.
- It will need to conduct an appraisal of the sensitivity of its models to the controversial beliefs and what costs/harms can be averted, say, through more precise prioritization, if the truth value of the beliefs is better known.
- Usually, I think, any specific controversial belief will likely be close to irrelevant for a model so that it can be safely ignored. But when this is not the case, further safeguards can be installed:
- Engagement with the belief can be treated as an infohazard, so those who research it don’t do so publicly, and new people are onboarded to the research only after they’ve won the trust of the existing researchers.
- External communication may take the structure of a hierarchy of tests, at least in particularly hazardous cases. The researchers need to gauge the trustworthiness of a new recruit with questions that, if they backfire, afford plausible deniability and can’t do much harm. Then they only gradually increase the concreteness of the questions if they learn that the recruit is well-intentioned and sufficiently open-minded. But this can be uncooperative if some codes become known, and then people who don’t know them use them inadvertently.
- If the risks are mild, there may be some external communication. In it, frequent explicit acknowledgements of the risks and reassurances of the intentions of the researchers can be used to cushion the message. But these signals are cheap, so they don’t help if the risks are grave or others are already exploiting these cheap signals.
- Internal communication needs to frequently reinforce the intentions of the participants, especially if there are some among them who haven’t known the others for a long time, to dispel worries that some of them may practice other than prosocial, truth-seeking intentions.
- Agreed-upon procedures such as voting may avert some risk of internal fragmentation.
An example that comes to mind is a situation when a friend of mine complained about the lacking internal organization of certain unpolitical (or maybe left-wing) groups and contrasted it with a political party that was very well organized internally. It was an, in our circles, highly disreputable right-wing party. His statement was purely about the quality of the internal organization of the party, but I only knew that because I knew him. Strangers at that meetup might’ve increased their credence that he agrees with the policies of that party. Cushioning such a mildly hazardous statement would’ve gone a long way to reduce that risk and keep the discussion focused on value-neutral organizational practices.
Another disreputable opinion is that of Dean Radin who seems to be fairly confident that there is extrasensory perception, in particular (I think) presentiment on the timescale of 3–5 s. He is part of a community that, from my cursory engagement with it, seems to not only assign a nonzero probability to these effects and study them for expected value reasons but seems to actually be substantially certain. This entails an air of disreputability either because of the belief by itself or the particular confidence in it. If someone were to create a model to predict how likely it is that we’re in a simulation, specifically in a stored world history, they may wonder whether cross-temporal fuzziness like this presentiment may be signs of motion compensation, a technique used in video compression, which may also serve to lossily compress world histories. This sounds wild because we’re dealing with unlikely possibilities, but the simulation hypothesis, if true, may have vast effects on the distribution of impacts from interventions in the longterm. These effects may plausibly even magnify small probabilities to a point where they become relevant. Most likely, though, they stem from whatever diverse causes are behind the experimenter effect.
I imagine that history can also be a guide here as these problems are not new. I don’t know much about religion or history, so I may be mangling the facts, but Wikipedia tells me that the First Council of Nicaea in 325 CE addressed the question of whether God created Jesus from nothing (Arianism) or whether Jesus was “begotten of God,” so that there was no time when there was no Jesus because he was part of God. It culminated as follows:
The Emperor carried out his earlier statement: everybody who refused to endorse the Creed would be exiled. Arius, Theonas, and Secundus refused to adhere to the creed, and were thus exiled to Illyria, in addition to being excommunicated. The works of Arius were ordered to be confiscated and consigned to the flames, while his supporters were considered as "enemies of Christianity." Nevertheless, the controversy continued in various parts of the empire.
This also seems like a time when, at least in most parts of the empire, a truth-seeking bible scholar would’ve been well advised to consider whether the question has sufficiently vast implication as to be worth the reputational damage and threat of exile that came with engaging with it open-mindedly. But maybe there were monasteries where everyone shared a sufficiently strong bond of trust into one another’s intentions that some people had the leeway to engage with such questions.
Legibility
This is a less interesting failure mode as it is one where the systems that we create to improve our decision-making actually fail to achieve that goal. It’s not one where successfully achieving that goal backfires.
I also think that while this may be a limitation of some collaborative modeling efforts, it’s probably no problem for prediction markets.
The idea is that collaborative systems will always, at some stage, require communication, and specifically communication between brains rather than within brains. To make ideas communicable, they have to be made legible. (Or maybe literature, music, and art are counterexamples.) By legible, I’m referring to the concept from Seeing Like A State.
In my experience, this can be very limiting. Take for example what I’ll call the Cialdini puzzle:
It seems to me like a common pattern that for certain activities the ability to do them well is uncorrelated or even anticorrelated with the ability to explain them. Some of that may be just because people want to keep their secrets, but I don’t think that explains much of it.
Hence Robert Cialdini may be > 99th percentile at understanding and explaining social influence, but in terms of doing social influence, that might’ve boosted him from the 40th to the 50th percentile or so. (He says his interest in the topic stems from his being particularly gullible.) Meanwhile, all the people he interviews because they have a knack for social influence are probably 40th to 50th percentile at explaining what they do. I don’t mean that they are average at explaining in general but that what they do is too complex, nuanced, unconscious, intertwined with self-deception, etc. for them to grasp it in a fashion that would allow for anything other than execution.
Likewise, a lot of amazing, famous writers have written books on how to write. And almost invariably these books are… unhelpful. If these writers followed the advice they set down in their own books, they’d be lousy writers. (This is based on a number of Language Log posts on such books.) Meanwhile, some of the most helpful books on writing that I’ve read were written by relatively unknown writers. (E.g., Style: Toward Clarity and Grace.)
My learning of Othello followed a similar trajectory. I got from a Kurnik rating of 1200 up to 1600 quite quickly by reading every explanatory book and text on game strategy that I could find and memorizing hundreds of openings. Beyond that, the skill necessary to progress further becomes too complex, nuanced, and unconscious that, it seems to me, it can only be attained through long practice, not taught. (Except, of course, if the teaching is all about practice.) And I didn’t like practice because it often meant playing against other people. (That is just my experience. If someone is an Othello savant, they may rather feel like some basic visualization practice unlocked the game for them, so that they’d still have increasing marginal utility from training around the area where it started dropping for me.)
Orthography is maybe the most legible illegible skill that I can think of. It can be taught in books, but few people read dictionaries in full. For me it sort of just happened rather suddenly that from one year to the next, I made vastly fewer orthographic mistakes (in German). It seems that my practice through reading must’ve reached some critical (soft) threshold where all the bigrams, trigrams, and exceptions of the language became sufficiently natural and intuitive that my error rate dropped noticeably.
For this to become a problem there’d have to be highly skilled practitioners, like the sort of people Cialdini likes to interview, who are brought together by a team or researchers to help them construct a model of some long-term future trajectory.
These skilled practitioners will do exactly the strategically optimal thing when put in a concrete situation, but in the abstract environment of such a probabilistic model, their predictions may be no better than anyone’s. It’ll take well-honed elicitation methods to get high-quality judgments out of these people, and then a lot of nuance may still be lost because what is elicited and how it fits into the model is probably again something that the researchers will determine, and that may be too low-fidelity.
Prediction markets, on the other hand, tend to be about concrete events in the near future, so skilled practitioners can probably visualize the circumstances that would lead to any outcome in sufficient detail to contribute a high-quality judgment.